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Abstract

I introduce higher dimensional conformal field theory (CFT) for a mathematical
audience. The familiar 2D concepts of central charge, local fields, and conformal di-
mension still play their characteristic roles, but the algebra of symmetries shrinks
considerably from the 2D Virasoro to so(d+ 1, 1). This makes the exact solution and
classification of such CFTs significantly more difficult. I will expand on recent progress
that has been made in this direction, known as the conformal bootstrap. I will also
elaborate on how higher-dimensional CFT generalizes the work of Belavin, Polyakov
and Zamolodchikov of solving statistical models in 2D using the Virasoro algebra to a
higher-dimensional setting. Time permitting, I will introduce new results on bounding
the conformal dimensions of the 3D supersymmetric Ising model CFT.

1 Motivation

Why study CFTs in > 2 dimensions?

• Belavin, Polyakov + Zamolodchikov 1984
“infinite conformal symmetry in two dimensions”

• Ising CFTs coming from Vc,h, minimal model M(3, 4)

• Key point: Verma modules give insight into critical phenomena of a variety of statistical
systems (SLE)

• 2D Ising model: Exactly Solvable c = 1/2, hσ = 1/16 → ∆σ = hσ + h̄σ = 1/8, hε =
1/2 → ∆ε = 1

• 4D Ising model: Exactly Solvable using mean-field methods + renormalization: ∆σ =
1,∆ε = 2

• 3D Ising model: Famously insolvable. New method Conformal bootstrap gives
results consistent with approximation methods but several orders of magnitude more
precise: ∆σ = 0.5181489(10),∆ε = 1.412625(10) (c ≈ 0.98)

• Bootstrap also works in 2D case

• Maldacena Duality with gravity in hyperbolic spaces
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2 What is CFT in Higher Dimensions?

Definition 1. A conformal field theory in d dimensions is characterized by the following:

• The conformal group so(d, 1) with generators (with comparison to 2D case)

– Dilation, D ↔ L0 + L̄0

– Rotation Mµν ↔ L0 − L̄0

– Translation Pµ ↔ Li, L̄i, i ∈ Z+

– Special Conformal Kµ ↔ L−i, L̄−i, i ∈ Z+

• A Hilbert space H of states

• Operators O(x) : Rd → End(H) transforming under representations of the conformal
group.

e.g. O(0) is a rep. of SO(d), and Pµ acts by e[Pµ,·]O(0) = O(x)

• A distinguished vacuum vector, |0〉

• A set of primary fields defined by having KµO = 0. This also implies

– DO = ∆OO
– Pµ raises

– Kµ lowers

Note in 2D case these would only be called quasi -primaries

Proposition 2. Any local operator is a combination of primaries and descendants For a
given primary: it together with its descendants is a conformal multiplet.

• No infinite conformal symmetry ⇒ /

• But Conformal group acts transitively on triples of points in any dimension ⇒ ,

The goal of a field theory is to obtain explicit expressions for all correlation functions:

〈0|T {O1(x1) . . .Ok(xn)} |0〉

Make note about time ordering
Conformal invariance helps us in this task.
Two point functions:

〈O1(x1)O2(x2)〉 =
C

|x1 − x2|2∆O
(1)

Three point functions:

〈O1(x1)O2(x2)O3(x3)〉 =
f123

xa
12x

b
23x

c
34

(2)
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For scaling dimensions ∆ to match, we require a+ b+ c = ∆1 +∆2 +∆3. In fact:

a = ∆1 +∆2 −∆3, etc.

Four point functions are now more difficult, an in general may depend on the cross-
ratios (conformally invariant combination of the xi):

u =
x2
12x

2
34

x2
13x

2
24

, u =
x2
23x

2
14

x2
13x

2
24

Four point functions can depend nontrivially on the cross ratios:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(3)

3 The Operator Products Expansion, Crossing Sym-

metry, and the Conformal Bootstrap

As before there is a state-operator correspondence

O(0) ↔ |O〉 := O(0) |0〉

Here we take the state |O〉 to O(x). Note correspondence with 2D case where we define

Y (·, z) : V → End(V )

A primary operator gives rise to a primary state, a lowest-weight module for so(d, 1)
Now we can write:

Oi(x)Oj |0〉 =
∑
k

Cijk(x, ∂µ)Ok(0) |0〉 (4)

where Cijk is a function of x, ∂. Indeed it can be shown that Cijk is proportional to the
constant fijk times a (known) differential operator depending on only on the ∆ values.

Corollary 3. All correlation functions are determined by the scaling dimensions ∆i in the
theory, and the OPE coefficients fijk

〈O1(x1) . . .On(xn)〉 =
∑
k

C12k(x12, ∂2) 〈O2(x2) . . .On(xn)〉 (5)

Do this recursively until 1-points functions, and we have 〈O〉 = 0 except for the identity,
which has 〈1〉 = 1

Now to conclude, let’s look at 4-point functions. Let’s restrict to identical scalar corre-
lators
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〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
k,k′

fφφkfφφk′CφφO,a(x12, ∂2)CφφO′,b(x34, ∂4) 〈O(x2)O′(x4)〉

=
∑
k

f 2
φφkCφφO(x12, ∂2)CφφO′,b(x34, ∂4)

Iab

|x24|2∆O

=
∑
k

f 2
φφkg∆O,`O(u, v)

where we have defined g∆O,`O(u, v) to satisfy this. This is our conformal block decom-
position

Conformal blocks are known explicitly in even dimensions using techniques involving
conformal Casimir. Only series expansions through recursion of coefficients are known in
odd dimensions. Its not obvious that they depend on only cross ratios

In general the principle is this:

∑
O

O

2

1 3

4

=
∑
O

O

1 3

42

Because this should be invariant under permutation, we get two constraints on g

g(u, v) = g(u/v, 1/v), g(u, v) =
(u
v

)∆φ

g(v, u) (6)

This last condition then becomes:∑
O

f 2
φφO(v

∆φg∆,`(u, v)− u∆φg∆,`(v, u)) = 0

But in a unitary (reflection-symmetric) CFT, we have that fφφO are real, and their squares
are thus positive.

The more complicated term in parentheses, when expanded in a polynomial in z, z̄ around
some point to a finite order ∂n

z ∂
m
z̄ ,m + n = Λ becomes just a finite-dimensional vector of

polynomials depending on just ∆φ,∆O and `O (this vector has one component each O). We
can thus write this (finite dimensionally!) as:∑

O

f 2
φφOF∆,`(z, z̄) = 0 (7)

Concept 4 (Conformal Bootstrap). If there exists a function α acting on the space of
polynomial vectors F such that that α(Fi) > 0 for each component i, then crossing symmetry
is violated, and the given data does not represent a valid CFT.
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4 Example: Regions in the Space of 3D Ising-like CFTs

Using mixed correlators 〈σσεε〉, we get this island in the space of 3D CFTs on two relevant
operators:

There are much stronger bounds for this island using further known constraints on cross-
ing symmetries of three-point functions in such theories, together with a technique of scan-
ning over ratios of three-point coefficients, known as theta-scan. We have extended this to
the larger space of CFTs away from this island. Moreover we have novel bounds on a related
CFT in this space known as the supersymmetric Ising model.
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